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Abstract

A temperature field in a thin moving sheet heated with a laser beam is calculated. The power density in the beam is

distributed according the Gauss function. Cooling effects caused by the free or forced convection in ambient gas is taken

into account. The problem becomes two dimensional by averaging the temperature field over the sheet thickness. Two-

dimensional integral Fourier transformation on space coordinates is applied to solve the problem. It gives an analytical

solution of the problem in the Fourier space. The inverse Fourier transformation is fulfilled and the solution is rep-

resented via an integral having exponential asymptotes at infinity.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

For effective laser material processing it is often

useful to get a theoretical estimation of expected process

results. Especially the heating of metal sheets with a

laser beam requires to know the expected temperature

field arising in the work piece depending on parameters

like laser power, sheet velocity, gas flow and so on. This

problem occurs for material processing like hardening,

cutting or welding. The aim of this paper is to develop a

simple algorithm for calculation of the laser induced

temperature field in a thin moving sheet and to find an

asymptotic formula for temperature at large distance

from heating point. The asymptotic solution is com-

pared with the full simple calculation, that does not

consider non-linear effects like melting or evaporation,

and it will be useful as source for a more complex model

of this task, where also the Stefan problem will be

considered.

A lot of finite element based solutions for special

applications can be found in literature [1–6], but for this

first simple linear model an analytical solution of the

heat conduction equation is suggested. An analytical

solution for the 3D temperature field arising around a

point-like heat source moving through the medium was

found by Rosenthal [7,8]. In the monograph [9] written

later by Carslaw and Jaeger one can find more complex

solutions for analogous problem in 2D space and also

for a thin sheet with cooling effects due to ambient gas.

These solutions were useful for estimating of the as-

ymptote of the temperature fields for large distances

from the heat source. Most former solutions of the heat

conduction equation concerning laser beam welding are

based on a semi-infinite geometry [10–13] and cannot be

used in this special case of micro-welding of thin metal

foils.

In a vicinity of the heat source the temperature field

has a strong dependence on a shape of a heat distribu-

tion function. The temperature maximum can be reliably
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calculated only if the heat distribution function is taken

into account and correctly described. For the heating

with a TEM00-laser beam the natural shape of the heat

distribution is the Gauss function. The Gauss distribu-

tion will be used below to describe the very local heating

of thin moving sheets. Such kind of problem arises in

micro-welding of metal thin sheets described in [14].

Ambient gas can take away a part of heat supplied

to the sheet. Three mechanisms can give the cooling

effect:

(a) the natural (free) convection,

(b) the forced convection (due to a blowing jet),

(c) the back heat irradiation from the hot sheet surface.

The first effect is usually small, but the next two ones

must be included into the mathematical model. Below

these cooling effects are considered in a traditional

manner used in the heat transfer theory [2]: a heat

transfer coefficient is introduced into the model. The

developed model is validated for the case of beam radius

greater than sheet thickness (rb > h). Further on in this
linear model the obedience of thermo-physical parame-

ters on temperature and the heat of fusion or evapora-

tion (Stefan problem) are not considered.

2. Setting of the problem and method of solution

Let us consider a thin sheet moving with a velocity u

along the x0-axis. A laser beam propagating along the z0-
axis illuminates the sheet from below (Fig. 1). A heat

flux introduced into the sheet may be described by the

Gauss function

qðrÞ ¼ q0 exp
�
� r2=r2b

�
; ð1Þ

where q0 is the maximal heat flux density, rb is the ef-
fective beam radius. These values determine the laser

beam power I0:

I0 ¼ pr2bq0: ð2Þ

In the moving sheet the temperature obeys the heat

conductivity equation

qCpu
oT
ox0

¼ k
o2

ox02

�
þ o2

oy02
þ o2

oz02

�
T ; ð3Þ

where q, Cp, k are the density, specific heat capacity, and
heat conductivity, respectively. Boundary conditions

have to account heat introduced in the sheet by the laser

beam, qðrÞ and also the heat leaving the sheet surfaces
due to the cooling effect of ambient gas and back irra-

diation:

at z0 ¼ 0: �k
oT
oz0

¼ qðrÞ � a1ðT � TgÞ; ð4Þ

at z0 ¼ h: �k
oT
oz0

¼ a2ðT � TgÞ;

where a1, a2 are the heat transfer coefficients for the
lower and upper surfaces of the sheet, Tg is the ambient
gas temperature. The boundary condition at infinity for

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y02

p
! 1 has to be T � Tg ¼ 0: ð5Þ

It should be noted that the coefficients a have an em-
pirical character and depend on the structure of gas flow

at the sheet surface. For the case of natural (or free)

convection a2 is in the range of 10–100 W/m2 K. For
very intense flows (like in a blowing gas jet) one can

expect values of a1 	 100–5000 W/m2 K.
If the sheet thickness is small and sheet is made of

metal with a large heat conductivity k one can neglect
the temperature variations in z0-direction. By integration
of Eq. (3) in z0-direction from z0 ¼ 0 to z0 ¼ h and sub-
stituting the boundary conditions (4) in the Eq. (3) one

can obtain

qCpuh
o�TT
ox0

¼ hk
o2

ox02

�
þ o2

oy02

�
�TT þ qðrÞ � ða1 þ a2Þð�TT � TgÞ;

ð6Þ

where �TT is the averaged temperature ð�TT ¼ 1
h

R h
0
T dz0Þ.

For Eq. (6) the same boundary condition (5) is valid.

By introducing the dimensionless variables

x ¼ x0

rb
; y ¼ y0

rb
; z ¼ z0

rb
; h ¼ ð�TT � TgÞ

T

;

T
 ¼
I0
4pkh

¼ q0r2b
4kh

;

and the coefficients

Pe ¼ qCpurb
4k

; Bi ¼ ar2b
4kh

:

Fig. 1. A thin sheet is moving with a velocity u along the x0-
axis. A laser beam propagating along the z0-axis illuminates the
sheet from below.

718 R. Brockmann et al. / International Journal of Heat and Mass Transfer 46 (2003) 717–723



(T
 is the characteristic temperature scale for the prob-
lem, Pe is the Peclet number, Bi is the Biot criterion

based on the total heat transfer coefficient a ¼ a1 þ a2)
the governing Eq. (1) has the form

Bih þ Pe
oh
ox

� 1
4

o2

ox2

�
þ o2

oy2

�
h ¼ e�x2�y2 : ð7Þ

The next substitution

hðx; yÞ ¼ e2Pex wðx; yÞ ð8Þ

leads to another equation

ðBiþ Pe2Þw � 1
4

o2

ox2

�
þ o2

oy2

�
w ¼ ePe2�y2�ðxþPeÞ2 : ð9Þ

As it follows from Eqs. (8) and (9) the boundary con-

ditions at infinity for function are zero. Indeed, if we

suggest the substitution of

w ¼ ce�bx ðb P 0; c ¼ const:Þ

in Eq. (9), it follows:

b ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2 þ Bi

p
:

But from Eq. (8) follows, that b < 2Pe. This contradic-
tion means, that the constant c is zero (c ¼ 0) and w has
zero limits in infinity for all directions.

As w in Eq. (9) vanishes in infinity, the two-dimen-
sional integral Fourier transformation may be applied.

After the transformation of this equation an analytic

expression for the solution can be derived

~wwð~kkÞ ¼ exp Pe2 þ ikxPe� k2=4½ �
4pðBiþ Pe2 þ k2=4Þ ; ð10Þ

where k2 ¼ k2x þ k2y .
From (10) the original function wðx; yÞ can be ob-

tained as a twofold inverse Fourier transformation:

wðx; yÞ

¼ 1

4p

Z Z 1

�1

exp � k2=4þ Pe2 þ ikxðPeþ xÞ þ ikyy
	 


Biþ Pe2 þ k2=4
dkx dky :

ð11Þ

Let us introduce the vector ~bb ¼ ðxþ Pe; yÞ with
B ¼ k~bbk ¼ ðxþ PeÞ2 þ y2.
The integral (11) contains the scalar product

ð~kk �~bbÞ ¼ kb cosu, where u is the azimuth angle in the

Fourier space. Integrating about this angle u from 0 to
2p according to Ref. [15] we get from formula (11)

wðx; yÞ ¼ ePe2 1
2

Z 1

0

e�k2=4

Aþ k2=4
J0ðk

ffiffiffi
B

p
Þkdk; ð12Þ

where J0ðknÞ is the Bessel function and A ¼ Biþ Pe2.
In the monograph [15] one can find the integral

IðsÞ ¼ 1
2

Z 1

0

e�sk2=4J0ðk
ffiffiffi
B

p
Þkdk ¼ e

�B=s

s
: ð13Þ

In order to obtain from IðsÞ the integral staying in the
formula (12) the expression (13) must be multiplied by

e�As, and integrated on s from 1 to 1.
1

2

Z 1

0

Z 1

1

e�sðAþk2=4Þ ds
� �

J0ðk
ffiffiffi
B

p
Þk dk

¼ 1
2

Z 1

0

e�ðAþk2=4Þ

Aþ k2=4
J0ðk

ffiffiffi
B

p
Þk dk

¼
Z 1

1

e�ðAsþB=sÞ ds
s
: ð14Þ

It follows from (14)

1

2

Z 1

0

e�k2=4

Aþ k2=4
J0ðk

ffiffiffi
B

p
Þk dk

¼ eA
Z 1

1

e�ðAsþB=sÞ ds
s
: ð15Þ

The substitution of the integral (15) in the expression

(12) leads to

wðx; yÞ ¼ eBiþ2Pe2
Z 1

1

e�ðAsþB=sÞ ds
s
: ð16Þ

Finally one can obtain for the dimensionless tempera-

ture h

hðx; yÞ ¼ eBiþ2PeðxþPeÞ
Z 1

1

e�ðAsþB=sÞ ds
s
; ð17Þ

where A ¼ Biþ Pe2 and B ¼ y2 þ ðxþ PeÞ2.
The integral staying in (17) is a function of two

variables A and B. This integral can be calculated via the

series decomposition as shown in the Appendix A. An

asymptotic formula for calculation h at large values A

and B is also described in Appendix A.

3. Results and discussion

The asymptotic formula for temperature at large x

and y can be obtained with the help of formulae (A.15)

and (A.16):

has ¼
ffiffiffiffiffiffi
2p

p

F 1=4
expðBiþ 2Peðxþ PeÞ �

ffiffiffiffi
F

p
Þ; ð18Þ

where F ¼ 4AB ¼ 4ðBiþ Pe2Þ½y2 þ ðxþ PeÞ2�.
At y ¼ 0 and ðxþ PeÞ > 0 the formula (18) gives ex-

ponential decay due to non-zero Biot criterion:

has ¼
ffiffiffi
p

p

ðBiþ Pe2Þ1=4ðxþ PeÞ1=2
expðBi� 2½ðBiþ Pe2Þ1=2

� Pe�ðxþ PeÞÞ: ð19Þ

Only for Bi ¼ 0 the last expression gives the known re-
sults, [2], the ‘‘minus 1=2 power’’ decay:

has ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
Peðxþ PeÞ

r
; ðxþ PeÞ > 0: ð20Þ
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The expressions (18)–(20) have a singularity at the point

y ¼ 0, x ¼ �Pe. A small additive to the value F can

avoid this singularity. This additive depends on A, so the

improved expression for F is

F ¼ ð1þ 2AÞ
ffiffiffiffiffiffiffiffi
A=2

p
þ 4AB: ð21Þ

Note that in problems of laser micro-welding parameters

Pe and Bi are small. They are significantly smaller than 1.

In Fig. 2(a) the profiles of functions h and has are
shown for the parameters: y ¼ 0; Bi ¼ 0:018; Pe ¼ 0:1.
In Fig. 2(b) the parameter Pe has changed to Pe ¼ 1.
One can see a long tail in these temperature profiles.

The larger is the velocity of the sheet, the longer is the

tail.

The position of the temperature maximum is de-

scribed by the next equation

xm þ Pe ¼ Pe

R1
1
exp�½Asþ ðxm þ PeÞ2=s� dssR1

1
exp�½Asþ ðxm þ PeÞ2=s� dss2

; ð22Þ

obtained from the expression (17). The maximal values

of the function h (depending on Bi and Pe) calculated at

the point xm is shown in Fig. 3(a) as a contour map.

Fig. 3(b) shows a demonstration of the map for di-

mensional temperature maximum at xm: here the beam
power is I0 ¼ 10 W, the sheet thickness is h ¼ 0:05 mm,
the specific heat is Cp ¼ 460 J/kgK and heat conduc-

tivity of stainless steel is k ¼ 14 W/(Km).
From these maps the domain in parameter space can

be established where melting of the sheet material oc-

curs. For example the isotherm 1600 �C generates two
inequalities where T > 1600 �C and melting appears:

Pe < 0:8 and Bi < 0:2.
According to definitions (7) it means that in this case

the beam radius and the sheet velocity obey the relations

rb ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
0:8

kh
a

r
¼ 334 lm and u < 3:2

k
qCprb

	 126 mm=s ð23Þ

(here a was taken equal to 5000 W/m2 K).
According to formulae (23) one can find the para-

meters for optimizing the sheet heating, cutting or weld-

ing.

A temperature field arising around a point-like gauss-

distributed heat source is exemplified in Fig. 4(a). The

shown temperature field depends on dimensionless co-

Fig. 2. Comparison of calculated and approximated functions: the solid curves are built according to expression (17) and (18).

Fig. 3. (a) The contour map of function h (at xm) depending on Bi and Pe, (b) maximal dimensional temperature in �C (at xm) de-
pending on Bi and Pe.
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ordinates x and y is calculated for the following pa-

rameters:

Laser power Pl: 10 W,
Sheet thickness: 50 lm,
Spec. heat Cp: 460 J/kgK,

Heat transfer coefficient a: 5000 W/m2 K,

Beam radius rb: 100 lm,
Velocity u: 100 mm/s,

Heat conductivity k: 14 W/Km.

To give a better expression of the temperature profile

along the y-axis (x ¼ const.), in Fig. 4(b) the profiles for
selected x values (x ¼ 0:8, 3.8, 6.8, 9.8 and 12.8) are
extracted.

The maximum temperature is reached in point

xm ¼ 0:8 and a high temperature gradient in y-direction

is seen. A melting of material (T > 1600 �C) can be ex-
pected only in the middle zone a with width of �rb <
y0 < þrb ð�1 < y < þ1Þ.

4. Conclusions

A mathematical model describing the tempera-

ture field on a thin moving sheet heated by a laser beam

is developed. According to a TEM00 beam mode, the

density of the heat flux supplied to the sheet surface is

described by the Gauss formula. Cooling effects caused

by gas flow and back irradiation are taken into account

Fig. 4. (a) Dimensional temperature field over the dimensionless coordinates x and y, (b) selected temperature profiles along y-axis

(x ¼ const.) of temperature field shown in Fig. 3(a).
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through the heat transfer coefficient. Small thickness of

the sheet allows the averaging of the temperature field

and the governing equation across the sheet. By apply-

ing the two-dimensional integral Fourier transformation

the formula for the temperature field is built. An as-

ymptote of the temperature at large values of coordi-

nates is expressed in analytical form. A map of the

maximal temperatures built as a function of Biot and

Peclet criteria permits one to give an estimation, when

the sheet material will be melted or even evaporated.

The asymptotic solution found in this article will be

useful as the boundary conditions of a more complex

model of the problem. In that forthcoming model, also

non-linear effects will be taken into account (Stefan

problem) and the geometry of the melting zone of laser

micro-welding for thin metal foils will be predicted.

Appendix A

Let us consider the integrals

F ðA;BÞ ¼
Z 1

1

e�ðAsþB=sÞ ds
s
; ðA:1Þ

f ðA;BÞ ¼
Z 1

0

e�ðAsþB=sÞ ds
s
: ðA:2Þ

A sum of these two integrals gives a full integral that can

be represented in a form

F ðA;BÞ þ f ðA;BÞ ¼
Z 1

0

e�ðAsþB=sÞ ds
s

¼ 2K0ð2
ffiffiffiffiffiffi
AB

p
Þ; ðA:3Þ

where K0ðnÞ is the modified Bessel function (see [2]).
From the other side, the integral (A.2) can be

transformed by the help of substitution s ¼ 1=t. It leads
to the expression

f ðA;BÞ ¼ �
Z 1

1
e�ðA=tþBtÞ ds

s
¼

Z 1

1

e�ðBtþA=tÞ dt
t
: ðA:4Þ

The comparison of expression (A.1) and (A.4) shows

that f ðA;BÞ is the same integral as F ðA;BÞ but with
permuted arguments:

f ðA;BÞ ¼ F ðB;AÞ: ðA:5Þ

Hence, from (A.3) follows,

F ðA;BÞ ¼ 2K0ð2
ffiffiffiffiffiffi
AB

p
Þ � F ðB;AÞ: ðA:6Þ

This formula will be used below.

The exponential function e�B=s in the integral (A.1),

can be represented as a series decomposition. After that

the formula (A.1) takes the form

F ðA;BÞ ¼
X1
n¼0

ð�BÞn

n!
Inþ1ðAÞ for B < A

and

F ðA;BÞ ¼ 2K0ð2
ffiffiffiffiffiffi
AB

p
Þ �

X1
n¼0

ð�AÞn

n!
Inþ1ðBÞ for A < B;

ðA:7Þ

where

Inþ1ðAÞ ¼
Z 1

1

e�As

snþ1
ds: ðA:8Þ

In the expression (A.7) the formula (A.6) is used.

The exponential integral Inþ1 obeys the next recurrent
formula

Inþ1ðAÞ ¼
e�A

n
� A

n
InðAÞ; ðA:9Þ

that permits all these integrals calculate via the first one

I1ðAÞ. The integral

I1ðAÞ ¼
Z 1

1

e�As

s
ds ðA:10Þ

is calculated according to the algorithm described in the

book [4].

In order to calculate F ðA;BÞ at large A and B we

consider another representation of this integral

F ðA;BÞ ¼
Z 1

n0

e�2
ffiffiffiffi
AB

p
chn dn

¼ K0ð2
ffiffiffiffiffiffi
AB

p
Þ � SignðA� BÞe�2

ffiffiffiffi
AB

p

�
Z s0

0

e�4
ffiffiffiffi
AB

p
sdsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sð1þ sÞ
p ; ðA:11Þ

where

n0 ¼ ln
ffiffiffiffiffiffiffiffiffi
A=B

p
; s0 ¼ ðShðn0=2ÞÞ2 ¼

Aþ B� 2
ffiffiffiffiffiffi
AB

p

4
ffiffiffiffiffiffi
AB

p :

The expression (A.11) is applicable at s0 < 1. A series
decomposition applied to the term ð1þ sÞ�1=2 in this
formula results another form for expression (A.11)

F ðA;BÞ ¼ K0ð2
ffiffiffiffiffiffi
AB

p
Þ � SignðA� BÞe�2

ffiffiffiffi
AB

p

�
X1
n¼0

cn
Enð4

ffiffiffiffiffiffi
AB

p
s0Þ

ð4
ffiffiffiffiffiffi
AB

p
Þnþ1=2

; ðA:12Þ

where c0 ¼ 1 and

cn ¼ ð�1Þnð1� 1
2
Þð1� 1

4
Þ � � � ð1� 1

2nÞ ðfor nP 1Þ:
ðA:13Þ

The function EnðtÞ ¼
R t
0
e�qqn�1=2dq obeys the next re-

current formula

EnðtÞ ¼ ðn� 1
2
ÞEn�1ðtÞ � tn�1=2e�t: ðA:14Þ

One can see that

E0ðtÞ ¼
Z t

0

e�qq�1=2dq ¼ 2
Z ffi

t
p

0

e�p2dp ¼
ffiffiffi
p

p
erfð

ffiffi
t

p
Þ:
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Another asymptotic expression was obtained for the

case s0 P 1. Here the term ð1þ sÞ�1=2 in the formula
(A.11) is represented as ðsð1þ 1=sÞÞ�1=2 and the series
decomposition in inverse power of the value s is used. It
results in expression

F ðA;BÞ ¼ SðA;BÞ ðA > BÞ;
2K0ð2

ffiffiffiffiffiffi
AB

p
Þ � SðA;BÞ ðA < BÞ;



ðA:15Þ

where

SðA;BÞ ¼ e�2
ffiffiffiffi
AB

p X1
n¼0

cn
sn0
Inþ1ðs04

ffiffiffiffiffiffi
AB

p
Þ: ðA:16Þ

Note that here the same integral (A.8) is used and the

coefficients cn in the formulae (A.12) and (A.16) are the
same.
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